Groups

Definitions for Groups

Function: todd_coxeter (relations, subgroup)
Function: todd_coxeter (relations)

Find the order of G/H where G is the Free Group modulo relations, and H is the subgroup of G generated by subgroup. subgroup is an optional argument, defaulting to []. In doing this it produces a multiplication table for the right action of G on G/H, where the cosets are enumerated [H,Hg2,Hg3,...]. This can be seen internally in the `\$todd_coxeter_state`.

The multiplication tables for the variables are in `table:todd_coxeter_state[2]`. Then `table[i]` gives the table for the ith variable. `mulcoset(coset,i) := table[varnum][coset];`

Example:

```(%i1) symet(n):=create_list(
if (j - i) = 1 then (p(i,j))^^3 else
if (not i = j) then (p(i,j))^^2 else
p(i,i) , j, 1, n-1, i, 1, j);
<3>
(%o1) symet(n) := create_list(if j - i = 1 then p(i, j)

<2>
else (if not i = j then p(i, j)    else p(i, i)), j, 1, n - 1,

i, 1, j)
(%i2) p(i,j) := concat(x,i).concat(x,j);
(%o2)        p(i, j) := concat(x, i) . concat(x, j)
(%i3) symet(5);
<2>           <3>    <2>           <2>           <3>
(%o3) [x1   , (x1 . x2)   , x2   , (x1 . x3)   , (x2 . x3)   ,

<2>           <2>           <2>           <3>    <2>
x3   , (x1 . x4)   , (x2 . x4)   , (x3 . x4)   , x4   ]
(%i4) todd_coxeter(%o3);

Rows tried 426
(%o4)                          120
(%i5) todd_coxeter(%o3,[x1]);

Rows tried 213
(%o5)                          60
(%i6) todd_coxeter(%o3,[x1,x2]);

Rows tried 71
(%o6)                          20
(%i7) table:todd_coxeter_state[2]\$
(%i8) table[1];
(%o8) {Array: (SIGNED-BYTE 30) #(0 2 1 3 7 6 5 4 8 11 17 9 12 14 #

13 20 16 10 18 19 15 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0)}

```

Note only the elements 1 thru 20 of this array `%o8` are meaningful. `table[1][4] = 7` indicates coset4.var1 = coset7